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The dynamics of long DNA moving through microfluidic arrays of micron-sized posts under a moderate
electric field are modeled by a Scher-Lax continuous-time random walk. The microscale model consists of a
repetitive sequence of three steps: �i� collision with the post and extension into two arms, �ii� electric-field-
driven unhooking from the post, and �iii� uniform translation until the next collision. The model features two
random variables: the initial offset between the two arms of the polymer during a given collision and the
distance traveled between collisions. For experimentally realistic values of the electric field strength and DNA
molecular weight, scaling laws indicate that the chain will generally be in a stem-flower conformation when
unhooking from the post. Compared to a taut-chain model at the same field strength, the stem-flower confor-
mation reduces the time engaged with the post and increases the collision frequency. Analytical expressions for
the mean velocity and dispersivity are derived as a function of the post density, post spacing, free-solution
mobility, Kuhn length, and sequence length. The incomplete extension of the chain does not strongly affect the
mean velocity, but tends to increase the dispersivity relative to a taut chain. As a result, the separation
resolution decreases as the field decreases for a moderate field, in agreement with experiments. The quantita-
tive agreement between the model and experimental data is satisfactory, especially considering that the model
contains no adjustable parameters.
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I. INTRODUCTION

DNA electrophoresis is one of the most commonly used
tools in molecular biology and genetics. The typical medium
for separating double-stranded DNA is an agarose gel. The
mean pore size of agarose �several hundred nanometers� is
much smaller than the radius of gyration of large DNA �mi-
crons�. As a consequence, the DNA must unwind and then
reptate through the gel. Long DNA cannot be separated in
this manner because the reptation tube becomes oriented
with the electric field �1�. As a rule of thumb, the upper limit
for a gel separation in a constant field is on the order of
several tens of kilobase pairs �bp�.

One way to circumvent the upper size limit for dc gel
separations is to use an artificial array of posts, which can be
microfabricated in silicon �2,3�, quartz �4�, or PDMS �5,6�.
Alternatively, a quasihexagonal post array can be formed by
the self-assembly of small superparamagnetic beads in a
magnetic field �7�. The post diameter in the array is on the
order of the radius of gyration of the DNA, whereas the
spacing between the posts is large enough to allow the DNA
to move freely through the interstices in its coiled conforma-
tion. Although the free electrophoretic velocity is indepen-
dent of molecular weight, from time to time the DNA col-
lides with one of the posts. The nominal time for a collision
scales linearly with molecular weight, giving rise to a sepa-
ration. The power of this separation technique is now well
established—long DNA that are impossible to separate in
agarose under a dc field can be readily separated in minutes
or less in a post array �4,8�.

In developing these separation devices, it is essential to

know how the mean velocity Ū* and dispersivity �effective

diffusivity� D̄* depend on molecular weight and the device
parameters. The difference in mean velocities between two
different species furnishes a measure of the separation be-
tween them, whereas their dispersivities quantify the sharp-
ness of the separation. Recently, Minc et al. �9� introduced a
continuous-time random walk �CTRW� model based on
geometration �10� to calculate these quantities. Geometration
models the dynamics as the repetitive three-step cycle indi-
cated in Fig. 1. In the first step, the DNA collides with a post
and extends into two arms, with the length distribution be-
tween the arms being a random variable. Once the two arms
are extended, the stronger electrical force acting on the
longer arm induces a “rope-over-pulley” disengagement,
where the longer arm “eats” the shorter one. Importantly,
these models �9,10� assume that the chain is completely ex-
tended while unhooking, making the rope-over-pulley anal-
ogy a literal one. After unhooking from the post, the DNA
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FIG. 1. �Color online� Schematic of the geometrative motion of
DNA through a post array. The post diameter d is on the order of
the radius of gyration of the DNA, while the post spacing a is much
greater. The cyclic motion consists of three steps: �a� collision with
the post, �b� unhooking, and �c� translation to the next collision.
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translates at its free solution mobility until it collides with
the next post. In gel geometration models, the distance be-
tween collisions is fixed at the DNA contour length �10� or
some deterministic distance farther downstream �11�,
whereas a model more appropriate for post arrays �9� allows
the distance between collisions to be a second random vari-
able that depends on the post density. The cyclic process
with a random distance between collisions is equivalent to a
Scher-Lax CTRW �12� on a lattice defined by the posts. The
walk is characterized by a transition probability density
��n , t� that, during a given cycle, the DNA will translate over
n rows of the post array during a time t. The net effect of
many such collision-translation cycles ultimately gives rise

to a mean velocity Ū*, and the fluctuations in the two random

variables cause a dispersivity D̄*.
The latter model �9� explains many of the overall trends in

the separation process and provides a reasonable prediction
of the separation resolution without any adjustable param-
eters. However, it fails to explain why the separation resolu-
tion is lower at lower fields. Explicitly, in the model pro-

posed by Minc et al. �9�, Ū* and D̄* both scale linearly with
the electric field E, analogous to a simpler model �13�. If the
mean velocity and dispersivity are linear in E, it follows that
the separation resolution is independent of the electric field
�cf. Eq. �57��. However, experiments have shown that the
separation resolution actually increases with electric field,
eventually reaching a plateau at an electric field strength
around 20 V/cm �8�. In the experimental work �8�, it was
suggested that the reduced resolution was a result of incom-
plete extension during collisions with the posts.

The goal of the present contribution is to quantify the
effect of incomplete extension, using the CTRW framework
presented by Minc et al. �9� and relaxing the requirement
that the chain be taut during the unhooking process. The
resulting theory retains the positive attributes of the taut-
chain model �9� �most importantly, an analytical solution
with no adjustable parameters� and limits to the latter when
the electrical energy is large compared to the thermal energy.
We will see that, for many realistic experimental parameters,
incomplete extension due to a weak field plays an important
role in determining the dispersivity by reducing the unhook-
ing time and increasing the collision frequency. Moreover,
the present model qualitatively accounts for the increase in
separation resolution with electric field, furnishing satisfac-
tory quantitative agreement with the experimental data with-
out any adjustable parameters. Finally, as an incidental ben-
efit, some mathematical details omitted for brevity in Ref. �9�
will be presented here in greater detail.

The paper is organized as follows. In the next section, we
compute the unhooking speed for two different chain confor-
mations �15� and provide a working definition for what is
meant by a “moderate” field. Section 3 presents a modifica-
tion of the CTRW model �9� to account for incomplete
stretching, ultimately arriving at analytical expressions for

Ū* in Eq. �48� and D̄* in Eq. �50�. The new results are com-
pared with those for a taut chain �9� and experimental data
�8� in Sec. IV, and Sec. V concludes with some possible
improvements to the present theory.

II. COLLISION WITH A POST IN A MODERATE FIELD

Let us first consider what happens in the geometration
model when a chain possessing N Kuhn steps of size lk col-
lides with the post. As depicted in Fig. 1, we assume that,
upon colliding, the chain extends into two arms. As indicated
in the left-side schematic of Fig. 2, the instantaneous number
of Kuhn steps in the longer arm �1� and shorter arm �2� can
be computed from N1�t�= �1−r�t��N and N2�t�=r�t�N, where
r�t� is the current fraction of the weight in the shorter arm.
Immediately after unraveling, the length distribution is given
by r�0�=r0� �0,1 /2�. At the end of the unhooking process,
r�t�=0. The extension of each arm is denoted by Li. In con-
trast to previous models �9,10�, we do not require that the
chain be extended to its contour length, Li=Nilk. Indeed, as
depicted schematically in Fig. 2, the extension of the chain
should depend on the tension in the arms, which itself de-
pends on the current value of r. Only for a taut chain is Li
=Nilk.

The curvilinear velocity v during unhooking is computed
from the balance between the electrical forces Fi acting on
each of the two arms and the friction resisting the curvilinear
motion,

F1 = F2 + �v . �1�

The electrical forces are modeled without hydrodynamic in-
teractions �16�,

Fi = NiqkE , �2�

where qk is the effective charge of a Kuhn step �17� and E is
the field strength. Approximating the friction on arm i by
�i��Li in a fluid of viscosity �, the force balance �1� be-
comes

N1qkE = N2qkE + ��L1�v� + L2�v��v . �3�

To simplify the subsequent analysis, we define the dimen-
sionless velocity and arm length as

v̄ � v/�0E, L̄i � Li/lk. �4�

Noting that the free-solution mobility is approximately equal
to the effective charge on a Kuhn step divided by the friction,
�0�qk /�lk, Eq. �3� adopts the form

N1 = N2 + �L̄1�v̄� + L̄2�v̄��v̄ . �5�

The curvilinear velocity quantifies the rate of mass trans-
fer from the short arm to the longer one. It is thereby equal to

FIG. 2. �Color online� Schematic of the chain conformation at
different points during the unhooking process. The values of r1 and
r2 correspond to critical values of the offset r between the two arms
that lead to a change in conformation.
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rate that the length of the long arm increases,

v̄ =
dL̄1

d�
, �6�

where

� � t��0E

lk
	 �7�

is a dimensionless time scale.

A. Unhooking velocities

To compute the total unhooking time, it is necessary to
first determine how the arm length depends on the curvilin-
ear velocity. To do so, we will make use of classic results for
the conformation of a tethered polymer chain in a uniform
flow field �14,15�. There are two qualitative differences be-
tween the canonical tethered-chain problem �14,15� and the
current one: namely, �i� the chain is not physically tethered to
the post and �ii� the tension in the chain is the result of an
electric field, not a hydrodynamic flow. The first restriction is
ameliorated by assuming that the retarding force of the post
is strong enough to keep the pivot point of the rope-over-
pulley constant, which is equivalent to modeling the instan-
taneous conformation by two chains tethered on either side
of the post, with the relative weights of these chains com-
puted from the offset value r�t�. The second concern is re-
solved by the electrohydrodynamic equivalence principle
�18�, which states that chain stretching results in a hydrody-
namic flow field are equivalent to stretching results with an
electrophoretic velocity v=�0E. Indeed, this equivalence
was implicitly recognized in a previous study of polyelectro-
lyte collisions in weak fields �16�.

In what follows, it will prove useful to define the dimen-
sionless quantity

� f �
kT

��0Elk
2 . �8�

The logic behind this choice will become more apparent
shortly. For the moment, though, we can interpret � f as the
balance between electrohydrodynamic forces acting on the
scale of a Kuhn step and the thermal energy. To translate this
into realistic experimental values, note that kT�10−21 J, the
viscosity of a buffer is close to that of water ���1 cp�,
typical free electrophoretic mobilities are around �0
�10−4 cm2/ �V s� �8�, and the Kuhn length of DNA is lk

�100 nm. With the electric field E given in V/cm,

� f �
100

E�V/cm�
. �9�

Thus, � f is around unity for a “strong” field of 100 V/cm
and around a hundred for a “weak” field of 1 V/cm.

Once the velocity exceeds v̄1�� f /N �15�, the chain
adopts the stem-flower conformation indicated in the middle
schematic of Fig. 2. In this conformation, the stem portion is
taut while the flower remains relaxed like a trumpet. The
number of monomers in the flower is given by �15�

nf = 3� f/v̄ , �10�

and the size of the flower is �15�

Xf = nflk/3. �11�

As in Ref. �15�, the numerical prefactors are retained to em-
phasize the incomplete extension of the chain. The choice of
� f in Eq. �8� is now apparent—it represents the characteristic
length scale for the flower.

The extension of the chain is the sum of the stem length,
�N−nf�lk, and the flower, Xf,

L̄ = N − 2� f/v̄ . �12�

The flower regime ends at a critical velocity v̄2, where the
flower contains only one Kuhn step. Substituting nf =1 into
Eq. �10�,

v̄2 = 3� f . �13�

By substituting Eq. �12� into Eq. �5� and making use of
the definition of r, the stem-flower curvilinear velocity
adopts the form

v̄ = 1 − 2r + 4� f/N for max�0,r1� � r � r2. �14�

The lower limit is

r1 =
1

2
�1 − 3� f + 4

� f

N
	 �

1

2
�1 − 3� f� , �15�

where the approximation follows from the fact that N�1.
The upper limit

r2 =
1

2
−

N

3� f
+

1

6

�2N

� f
	2

− 3 �16�

is computed from the analogous calculation for a trumpet
conformation �14�.

The stem-flower regime disappears when � f →0. Thus,
we can identify the model presented by Minc et al. �9� as
corresponding to the infinite-field limit, where the chain is
taut,

L̄ = N , �17�

for any value of r�t�. In this limit, the velocity decouples

from L̄ and the taut-chain velocity adopts the simple form

v̄ = 1 − 2r for r � r1. �18�

Before proceeding to show the validity of Eq. �14� in a
moderate field, a few remarks are in order. First, note that the
velocity expressions are discontinuous as r passes through r1.
The source of the discontinuity is the nature of the stem-
flower model, which was derived from a scaling argument
�15�. In reality, we would expect the chain to evolve
smoothly between the two states, with the curvilinear veloc-
ity undergoing a continuous transition between regimes. A
more detailed model that accounts for the local tension
�19,20� would capture this effect. Indeed, the entire analysis
thus far is predicated on the assumption that the chain con-
formation evolves much more quickly than the chain accel-
erates. This assumption must break down at high fields.
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However, changes in the conformation should be small at
high fields, since the chain will be in a taut conformation for
all values of r �except when r�1/2�.

B. Unhooking in a moderate field

Having established that the taut-chain model only domi-
nates the chain conformation in the infinite-field limit, we
now address the question of what happens in a finite field
and how to define a “moderate” field. The taut regime will
disappear entirely if r1 in Eq. �15� becomes negative. In the
realistic limit of long chains, where N�1, this occurs when

� f 	 1/3. �19�

Using Eq. �9� in Eq. �19�, the taut regime thus only appears
in very strong electric fields, somewhere on the order of
several hundred V/cm. As typical experiments �2–4,7,8,21�
use tens of V/cm, Eq. �19� predicts that the chains will never
actually be taut at all. Videomicroscopy �3,21� confirms this
qualitative prediction, as there always appears to be a bright
spot at the end of the chain, indicating the presence of a
flower.

For very small offsets between the arms �r�1/2�, the
trumpet regime �14,16� must play a role because the velocity
is very small. However, the range of r values that accommo-
date a trumpet collision can be extremely limited. For the
large values of N realized in experiments, extremely low
fields are needed for the trumpet regime to make a significant
contribution. Indeed, André et al. �16� noted previously that
the range of electric fields that permit a “fully trumpet” un-
hooking process should be very limited for DNA.

Given that the taut-chain regime disappears for reasonable
field strengths and the trumpet regime has a very limited
range of validity �most of which is located around a singu-
larity of dubious physicality at r=1/2�, in what follows we
will assume that the chain is always in a stem-flower confor-
mation when unhooking from the post. The latter provides an
operational definition for what we mean by a “moderate”
electric field—the electric field must be small enough to ig-
nore both the trumpet and taut chain regimes. Neglecting the
trumpet corresponds to a lower bound of N /� f �O�10�,
whereas neglecting the taut chain requires that � f be at least
O�1�. Inasmuch as N is typically several hundred, both con-
ditions should be satisfied in experiments with electric fields
on the order of 10 V/cm.

One important consequence in ignoring the trumpet con-
formation is that it removes a singularity at r=1/2. The sin-
gularity is a result of neglecting diffusion in the model, since,
at very low velocities, diffusion should break the metastable
state �3�. In previous analyses of this type �9,10,22�, the sin-
gularity played a small role, since the divergence is logarith-
mic and the probability distribution for r0 is not strongly
weighted at r=1/2 �22�. The r=1/2 singularity disappears in
the stem-flower model of the collision process, since the
flower “adds” a fixed speed 4� f /N to the taut-chain velocity.
We can thus treat the small velocity in the stem-flower state
near r�1/2 as a crude approximation of a “diffusive escape
velocity” from the metastable state.

There is one other minor point to consider in a fully stem-
flower model. When the chain comes very close to unhook-

ing from the post, the stem-flower configuration should begin
to break down on the short arm as the number of monomers
decreases. Moreover, the velocity of the two arms may differ
due to changes in the local tension �19�. However, the chain
will be moving very quickly at this point �due to the strong
electrical force acting on the longer arm�, so we would ex-
pect that whatever conformation arises in the short arm
proximate to unhooking from the post will be short lived and
thus contribute little to the total unhooking time.

III. CONTINUOUS-TIME RANDOM WALK MODEL

In the present section, we modify the taut-chain CTRW
model �9� to account for a stem-flower configuration during
the unhooking step. Note that the unhooking velocity v̄ for
the stem-flower in Eq. �14� reduces to that of a taut chain
�Eq. �18�� in the limit � f →0. As a result, the analysis which
follows should also reduce to the taut-chain results �9� in the
infinite-field limit.

A. Cycle time

When the polymer collides with the post, it is in a coiled
conformation and needs to first unravel into two arms. The
process is quite complex �see, for example, Ref. �16��, but to
make progress analytically �23� we will adopt the preaver-
aged extension model �10�. In the latter, the speed of the
unraveling of each arm is assumed to be proportional to the
electrical force acting on the arm. Thus, the total time for
unraveling is

�1 = N . �20�

After forming two arms, the mass distribution between
the arms is given by r0. As in prior work �9,10�, r0 is chosen
to be a uniformly distributed random variable between 0 and
1/2. A previous study of post collisions �22� demonstrated
that more complicated distributions furnish qualitatively
similar results, so we continue to invoke the uniform distri-
bution for simplicity.

Given an initial condition r�0�=r0, we now need to derive
the time for the second step—i.e., the time �2 where r��2�
=0. The differential equation for r is obtained by substituting
Eq. �12� for the longer arm 1 into Eq. �6� and then eliminate
v̄ with Eq. �14�, ultimately arriving at

− � N

1 − 2r + 4� f/N
+

4� f

�1 − 2r + 4� f/N�3� dr

d�
= 1. �21�

Integrating this equation from r=r0 to r=0, the unhooking
time is found to be

�2�r0� = �2a
�r0� + �2b

�r0� , �22�

where the two contributions to the total time are

�2a
=

N

2
ln� 1 + 4� f/N

1 − 2r0 + 4� f/N
	 , �23�
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�2b
=

� f

�1 − 2r0 + 4� f/N�2 −
� f

�1 + 4� f/N�2 . �24�

In general, the logarithmic term dominates the total unhook-
ing time. Approximating the unhooking time by

�2�r0� �
N

2
ln� 1 + 4� f/N

1 − 2r0 + 4� f/N
	 �25�

thus only introduces small errors in the final numerical pre-
factors, while still permitting an analytical solution. Note
that �2�r0��N /2 ln�1/ �1−2r0�� as � f →0, which is the un-
hooking time for the fully extended chain �9,10�.

At the instant before the chain disengages from the post,
the curvilinear velocity is v̄=1+4� f /N. Using Eq. �12�, this
corresponds to an extension

L̄f =
N + 2� f

1 + 4� f/N
. �26�

In the infinite-field limit, L̄f →N, which is the extension of a
taut chain �17�.

After unhooking, the DNA is assumed to translate at a
uniform speed �0E until it hits the next post. The time re-
quired to move the rear of the chain �the part that last leaves
the post� to the next collision point a distance na downstream
would then be na /�0E or, in dimensionless notation,

�3 = n
 , �27�

where 
=a / lk is the number of Kuhn steps that would fit
along the center-to-center post spacing. As in the taut-chain
model �9�, we assume again that the collision probability is
proportional to the areal post density, �=d /a, for a post di-
ameter d and center-to-center spacing a, as indicated in Fig.
1. Collisions are forbidden along the extended chain back-
bone, so the first possible collision can occur at row

n* = L̄f/
 . �28�

The probability h�n� of colliding in the nth row is given by

h�n� = ��1 − ��n−n*
for n 	 n*,

0 otherwise.
� �29�

B. Transition probability density for the CTRW

Knowledge of the cycle times �i and the collision prob-
ability h�n� allows us to compute the transition probability
density ��n , t� that, during a given cycle, the DNA moves
past n posts in a time t. The transition probability density is
partially separable into the probability h�n� of making a
movement over n rows and the conditional probability
g�� �n� of making such a movement in time �,

��n,�� = g���n�h�n� . �30�

The derivation of the conditional probability g�� �n� be-
gins with the total time for a cycle through n rows,

� = N +
N

2
ln� 1 + 4� f/N

1 − 2r0 + 4� f/N
	 + n
 . �31�

The minimum cycle time is

�min = N + n
 , �32�

and the maximum cycle time is

�max = �min +
N

2
ln�N + 4� f

4� f
	 . �33�

The probability P����� �n� that the cycle time over n
rows is less than some time ��� ��min,�max� is given by

P�� � ���n� = �
0

��
g���n�d� . �34�

Since r is uniformly distributed between 0 and 1/2,

P�� � ���n� = 2r0����n� , �35�

where r0�� �n� is the inverse of Eq. �31�,

r0 =
1

2
+

2� f

N
−

1

2
�1 +

4� f

N
	exp−

2�� − �N + n
��
N

� .

�36�

The equation for g�� �n� is then obtained by differentiating
Eq. �34� with respect to � and using Eq. �35�,

g���n� = 2
dr0

d�
, �37�

where we have used the fact that g�0 �n�=0. Substituting Eq.
�36� into Eq. �37� and differentiating yields

g���n� =
2�1 + 4� f/N�

N
exp−

2�� − �N + n
��
N

� . �38�

The latter density is valid for �min����max, and g�� �n� van-
ishes otherwise. In the infinite-field limit, g�� �n� reduces to
the result given in Ref. �9�.

C. Moments of the walk

The transition probability density ��n ,�� defines a Scher-
Lax CTRW on a lattice defined by the posts. The Fourier-
Laplace transform of the probability density for the walk is
given by �12�

p�k,s� =
1 − �0,s�

s�1 − �k,s��
, �39�

where �k ,s� is the Fourier-Laplace transform of ��n ,��,

�k,s� = �
n	n*

e−ikn�
�min

�max

e−s���n,��d� . �40�

The Fourier variable k is made dimensionless with a−1, and
the Laplace variable s is made dimensionless with �0E / lk.
Use Eqs. �29� and �38� in Eq. �30�, substitute the result into
Eq. �40�, and then perform the integration and summation to
yield
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�k,s� =
L�s�e−s�N+n*
�e−ikn*

1 − �1 − ��e−ik−s
 , �41�

where

L�s� =
2��1 + 4� f/N�

sN + 2
�1 − � 4� f

N + 4� f
	�sN+2�/2� . �42�

The mth spatial moment of the probability p�k ,s� is com-
puted from

Mm�s� = im�dmp

dkm	
k=0

. �43�

Using m=0 in the latter and inverting furnishes M0�t�=1,
reflecting the conservation of probability density. The next
two moments are given by

M1�s� =
i

s
� 0�

1 − 0
	 , �44�

M2�s� =
− 1

s
� 0�

1 − 0
+ 2� 0�

1 − 0
	2� , �45�

where the primes indicate differentiation with respect to k
and the subscript indicates evaluating the resulting function
at k=0. In the long-time limit �s→0�, the dimensional mo-
ments have the asymptotic forms

M1 �
1

s2� Ū*

�0E

	 +

B

s
, �46�

M2 �
2

s3� Ū*

�0E

	2

+
2

s2� D̄* + Ū*Ba

�0Ea

	 , �47�

which serve as definitions of the mean velocity Ū* and dis-

persivity D̄*. The quantity B is a physically irrelevant con-

stant, which only arises in the calculation of D̄*.

D. Calculation of the mean velocity and dispersivity

The calculations leading up to the final expressions for Ū*

and D̄* involve a reasonable amount of algebra, which is
suppressed here for brevity. By first substituting Eqs. �41�
and �42� into Eq. �44�, performing the derivative, expanding
for small s, and then comparing the leading-order term with
Eq. �46�, the mean velocity is seen to adopt the form

Ū*

�0E
=

2
��n* + 1 − ��
3�N + 2�n*
 + 2
�1 − �� − 4�� f�

, �48�

where � is defined as

� = ln�1 +
N

4� f
	 . �49�

Note that the dimensionless quantity Ū* /�0E is equivalent to
the net electrophoretic mobility in the array made dimension-
less with the free solution mobility.

Performing the same operations with Eqs. �45� and �47�
yields the dispersivity

D̄*

�0Ea
=

�t + �sf

�3�N + 2�n*
 + 2
�1 − �� − 4�� f��3 . �50�

The first contribution

�t = �
N2�10 + ��2n* − 11� + �1 − n*�2�2� �51�

is analogous to the result for a taut chain. The second con-
tribution

�sf = 8f1��1 − ��
� f� − 2f2�2
� f�
2 �52�

represents the change in the dispersivity due to incomplete
stretching in the stem-flower state. In the latter, the functions
f1 and f2 are

f1 = 2
n* + ���6N + 4n*
� + ����2�3N + 2n*
� , �53�

f2 = N�1 + ����2� + 8� f�2n* − 1� + ���2N + 8� f�� ,

�54�

where �=n*−1.
It is straightforward to show that this new result reduces

to that derived for a taut chain �9�. In the limit � f →0, n*

=N /
. Although � diverges logarithmically as � f →0, it al-
ways appears in combination with positive powers of � f.
Consequently, all terms resulting from the incomplete exten-
sion of the chain vanish. The velocity and dispersivity then
reduce to

Ū*

�0E
=

2��n* + 1 − ��
5�n* + 2�1 − ��

�55�

and

D̄*

�0Ea
=

��n*�2�10 + ��2n* − 11� + �1 − n*�2�2�
�5�n* + 2�1 − ���3 , �56�

which are the results derived in Ref. �9�.
Knowledge of Ū* and D̄* also allows us to compute the

separation resolution—i.e., the ability to separate two species
of different size N. While our physical insights will come
mostly from an interpretation of Eqs. �48� and �50�, the sepa-
ration resolution is the quantity of interest in experiments
and the most easily observed test of the model. For a sepa-
ration length Ls, the separation resolution is defined as

Rs =
�Ū*

�Ū*�

�NTP�

16
, �57�

where �Ū* is the magnitude of the velocity difference and

NTP =
Ū*Ls

2D̄*
�58�

is the number of theoretical plates for a given species with

average velocity Ū* and D̄*.
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IV. DISCUSSION

A. Average collision time

Let us first consider how the incomplete extension modi-
fies the average time for a collision—i.e., the time to com-
plete the first two steps of the geometration cycle. The prob-
ability density gc��c� for the total collision time,

gc��c� =
2�1 + 4� f/N�

N
exp−

2��c − N�
N

� , �59�

is derived in a similar manner to g�� �n�, except that the
contribution from the third step of the geometration cycle is
ignored. Following Eqs. �32� and �33�, the latter expression
for gc��c� is only valid for

N � � � N�1 +
�

2
	 , �60�

with gc��c�=0 otherwise. The first moment of gc��c� is the
average collision time,

��c� =
3

2
N − 2� f� . �61�

Since � f� is always small compared to N, then the average
collision time is dominated by the taut-chain contribution,
3N /2.

Although incomplete stretching slightly reduces the aver-
age collision time, the extent of the decrease is insufficient to
completely explain the experimental results. In single-
molecule experiments on T4 DNA �169 kbp, N=560� mov-
ing through self-assembled arrays of magnetic posts �21�, the
average collision time was in the range 0.39N� ��c�
�0.53N. The largest field correction only reduces the taut
chain result, 1.5N, by approximately 0.15N.

There are at least two possible explanations for the con-
tinued discrepancy between the theoretical prediction of ��c�
and what is observed in experiments. As mentioned in the
context of the taut-chain theory �9�, the electrophoretic mo-
bility during the unhooking process is assumed to be the
same as the free solution velocity. One might expect that the
arms are in a hydrodynamically favorable conformation dur-
ing unhooking, whereupon the mobility appearing in the di-
mensionless curvilinear velocity equation �14� should be re-
placed by some effective mobility ����0. Exactly
determining �� for a stem flower is a formidable task, since
the stem and flower possess different conformations and thus
contribute differently to the total friction. A second explana-
tion is that the decoupling of the unraveling and unhooking
processes is an oversimplification. Indeed, there is no reason
why the chains should have to extend completely before be-
ginning the rope-over-pulley disengagement, since the elec-
trical force will be out of balance during the unraveling pro-
cess. Moreover, it follows from Eq. �60� that this model will
never predict an average trapping time less than N. The po-
tential of a simultaneous unraveling-unhooking model is re-
inforced by considering what would happen if the rope-over-
pulley time was the only relevant time scale for the total
collision process. A naive calculation of the total collision
time from the taut-chain model gives ��c��N /2, which

would be in very good agreement with experiments. Al-
though clearly not a proof, this result does suggest that the
coupling between unraveling and unhooking should be ex-
plored in more detail. A good starting point would be a
model that considers the local tension �19,20� during the en-
tire unraveling and unhooking process.

B. Mean velocity

Comparing the stem-flower unhooking velocity in Eq.
�14� to its taut-chain counterpart in Eq. �18�, it is clear that
unhooking is aided by the stem-flower conformation because
the relaxation in the flower reduces the total extension of the
chain. Since the friction scales linearly with the length of the
chain, the drag on a long stem flower is equivalent to a
smaller taut chain without reducing the electrical force �24�.
However, our result for Ū* in Eq. �48� indicates that the
incomplete stretching only introduces a small logarithmic
correction into the retardation caused by the posts �13�.

The final correction to Ū* /�0E is the result of the com-
petition between two effects. As seen in Eq. �61�, the average
dimensionless collision time decreases relative to a taut
chain as the field is decreased. At the same time, the reduced
extension of the chain as it disengages from the post �Eq.
�26�� decreases the average distance to the next collision. To
be more quantitative, the value of n* computed from Eq. �28�
with Eq. �26� will be less than in the taut-chain case, where
n*=N /
. The average number of posts between collisions,
given by the first moment of the distribution h�n� �9�, is

�n� = n* + �a

d
− 1	 , �62�

which decreases with the field �25�. Since the CTRW calcu-
lation includes not only the individual contributions from
these effects, but also the coupling between them, it is not
entirely straightforward to say that the decrease in the colli-
sion time dominates the increased collision frequency in de-
termining the effect of the field on the mean electrophoretic
mobility. Moreover, the simplified �nonsingular� model
adopted for collisions around r0=1/2 will also serve to in-
crease the net mobility of a stem flower relative to the model
adopted for a taut chain �9�.

C. Effective diffusivity

While the electrophoretic mobility only depends weakly

on the field, the dispersivity D̄* �Eq. �50�� can change dra-
matically with field strength. Before delving into the details,
let us first recall the key contributions to the dispersivity.
There are two random variables in the model that give rise to
dispersion: �i� the initial offset r0 between the two arms and
�ii� the distance between collisions, n. The role of fluctua-
tions in r0 is straightforward—each collision event can con-
tribute to the dispersion if the offset between the arms at the
start of the collision differs from the average offset. On the
other hand, the number of rows, n, between collisions makes
two different contributions to the dispersion. Similar to r0,
fluctuations in n are an intrinsic source of dispersion. How-
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ever, the average distance between collisions also plays a

role in determining D̄* by changing the number of times the
distribution for r0 is sampled. The dual role of n is a natural
consequence of the fact that the CTRW is only partially sepa-
rable; the value of n appears both in the collision probability
h�n� and the conditional probability density g�� �n�, while the
value of r0 only serves to determine �.

The fluctuations in n should be independent of the field
because the probability of colliding in row n	n* is assumed
to be purely geometric, increasing with the post density �.
This hypothesis is confirmed by computing the variance in n,

�n2� − �n�2 =
1 − �

�2 , �63�

which is indeed independent of n* and thus of the field.
Although the fluctuations in n are constant as the field

changes, we have already seen that the dimensionless aver-
age collision time ��c� decreases, while the frequency of col-
lisions, �n�−1, increases. Although the two effects cannot be
rigorously separated �hence the need for the full CTRW cal-
culation above�, we can gain some physical insight by con-
sidering each effect individually. The amount of dispersion
caused by each collision is approximated by the variance of
gc���,

��c
2� − ��c�2 =

N2

4
− � fN�2�1 +

4� f

N
	 . �64�

The correction for a finite field can be significant for very
weak fields �i.e., when � f �N�. However, weak fields also
result in strong increases in the collision frequency by de-
creasing n*. Thus, weak fields lead to many low-dispersion
collisions, whereas strong fields lead to fewer high-
dispersion collisions. The question then reduces to determin-
ing the more important effect, the reduced dispersion per
collision �Eq. �64�� or the increased collision frequency �Eq.
�62��. Unfortunately, this is a coupled effect, so continuing to
think of the two factors individually will not answer the
question.

Rather, it is necessary to consider the full result in Eq.
�50�. As seen in Fig. 3, the dispersivity increases monotoni-
cally with � f �E−1 at a fixed value of a. Thus, we can con-
clude that the increased frequency of collisions dominates
the reduction in the dispersion per collision, leading to an
increase in the dispersion at weaker fields for the experimen-
tally relevant parameter range considered here. The disper-
sivity also increases with increasing molecular weight N. The
latter is a result of the fact that the dispersion per collision
scales like N2, whereas N-dependent changes to the fre-
quency of the collisions scale like N.

A monotonic decrease in the dimensionless dispersivity

with the field is also observed in Fig. 4, where D̄* /�0Ea is
plotted as a function of � f at various values of the post spac-
ing, a. In this figure, the post spacing is fixed at d=1 �m and
the molecular weight N=560 corresponds to T4-DNA. The
dependence on a is readily understood by the balance be-
tween the two terms: n* and �a /d−1�, appearing in Eq. �62�.
When a is large and the posts are widely spaced, then

changes in n* do not have a strong effect on �n�. As a result,

the dimensionless quantity D̄* /�0Ea varies weakly with the
field. When a is not large, then changes in n* strongly impact

�n�. In this second case, D̄* /�0Ea increases sharply as the
field decreases, as seen in Fig. 4. The results are less dra-
matic for shorter chains because n* plays an ever lessening
role in determining �n�, leading to weaker variations in

D̄* /�0Ea with the field.

D. Separation resolution and comparison with experiments

From a practical standpoint, the most important result of
the calculation presented here is the separation resolution in
Eq. �57�, which quantifies the ability to separate two differ-
ent species. Figure 5 compares the theoretical results for the
separation resolution with experimental data on separations

FIG. 3. �Color online� Plot of the dimensionless dispersivity
�Eq. �50�� as a function of � f for �=0.2 and 
=50. In dimensional
terms, this corresponds to a post diameter d=1 �m and center-to-
center spacing a=5 �m. The different curves correspond to ap-
proximate values for �-DNA �N=160�, 2�-DNA �N=320�, and
T4-DNA �N=560�.

FIG. 4. �Color online� Plot of the dimensionless dispersivity
�Eq. �50�� as a function of � f for a post diameter d=1 �m and
T4-DNA �N=560�. The different curves correspond to increased
spacing between posts.
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between �-DNA and 2�-DNA in self-assembled magnetic
arrays �8�. The two curves are theoretical results for a mod-
erate field, and the two lines are theoretical results for a taut
chain.

The moderate field theory presented here qualitatively
captures the key trend in the experiments when the field is
less than 20 V/cm: namely, the increase in the separation
resolution with increasing electric field. The preceding dis-

cussion of Ū* and D̄* provides us with the reason behind the
increase. The effective species electrophoretic mobilities
only weakly depend on the electric field, but the dispersion
increases dramatically at lower fields. As a result, the spacing
between the bands is relatively insensitive to the electric
field, whereas the bands get wider as the field is decreased.
The predicted rate of increase slows down as the field in-
creases, mimicking the plateau in the experimental data.

Qualitatively, the results achieved here are a marked im-
provement over existing models of this particular separation
�9,13�, which predict that the resolution should be indepen-
dent of the field. From a quantitative standpoint, the agree-
ment between the present theory and experiment is satisfac-
tory, especially in light of the fact that the theory contains no
free fitting parameters. Indeed, all of the parameters appear-
ing in the theory �molecular weight, post size, post spacing,
free solution mobility, and electric field strength� are readily
accessible from experiments. Although the taut-chain theory
appears to be in better quantitative agreement with the ex-
perimental data, uncertainties in the experimental data and
the physical parameters appearing in the models make such a
claim tenuous.

There are two major shortcomings with both CTRW theo-
ries �stem flower and taut chain�: �i� the order of the theory
curves with array density is reversed compared to the experi-

mental data, and �ii� the theories do not predict the loss of
resolution at higher electric fields. Both of these deficits are
the result of the overly simplistic collision model for h�n�
given by Eq. �29�. The latter model assumes that the location
of the DNA in the unit cell of the post array is unbiased. The
probability of the DNA colliding with the post is then esti-
mated by the likelihood that its center of mass will overlap
with some part of the post as the DNA passes through the
unit cell. In order for the DNA location to be unbiased, the
electric field must be uniform. This is a reasonable model for
a dilute array, since the perturbation to the electric field
caused by an insulating post is localized around that post �5�.
The model breaks down in a more dense array, as the electric
field is strongly deformed by the nearby posts. Moreover, the
curved field lines tend to drive the DNA towards a vertical
post-to-post equipotential line that is centered in the gap be-
tween two posts �with the direction of motion indicated in
Fig. 1�, which greatly increases the probability of colliding
with the next row in a hexagonal array. As a result, the col-
lision probability increases more quickly than � in dense
arrays and the resolution thereby increases. This effect is
absent in the present collision model, leading to the discrep-
ancy between the theory and experiment.

As the taut-chain model �9� fails to predict the decline in
the resolution at strong fields, it is unsurprising that the
present model fails as well, since the stem-flower effect is
only important at weak fields. The failure of both models at
high fields is related to the assumption in Eq. �29� that the
chain can collide at row n*. In order to collide, the chain
must be at least partially relaxed. While the flower provides
some relaxation at low fields, the chain will be almost fully
extended in a strong field. As a result, the chain must relax
during its translation through the array before it is able to
collide, whereupon the first possible collision is located at
some row n�n*. Both of the issues identified here �the effect
of the curved field lines and the relaxation at high fields� are
important topics for further research in this area. The present
contribution provides a framework for incorporating more
complex collision models, and the results presented here
demonstrate the potential of the CTRW approach to model
electrophoretic separations in microfluidic post arrays.

V. CONCLUSIONS

In the present contribution, the CTRW model of DNA
electrophoresis in microfluidic post arrays �9� was modified
to account for incomplete extension of the chain during un-
hooking from the post. It was shown that the dominant con-
formation during the unhooking process is a stem flower,
leading to a decrease in the collision time and increase in the
collision frequency when compared to a taut chain. While the
stem-flower conformation does not have a strong effect on
the effective electrophoretic mobility, it results in a signifi-
cant increase in the dispersivity over what would be expected
from a taut chain. The increased dispersivity leads to a re-
duction in the separation resolution at weaker fields, in
agreement with experiments.

Although the theory developed here constitutes an impor-
tant step towards understanding DNA electrophoresis in mi-

FIG. 5. �Color online� Comparison of experiments �8� and
theory for separations of �-DNA and 2�-DNA in self-assembled
post arrays of magnetic beads. Data set 1 corresponds to d
=1.4 �m and a=4.1 �m. Data set 2 corresponds to d=1.0 �m and
a=3.8 �m. The free mobility is 2.8�10−4 cm2/ �V s� �8�. The data
were collected a distance Ls=7.5 mm downstream from the injec-
tion point. The curves labeled “Theory” are computed from Eqs.
�48�, �50�, and �57�. The lines labeled “Taut Chain” are computed
from Eqs. �55�–�57� and correspond to the model presented in �9�.
The dashed lines on the experimental data are added to guide the
eye.
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crofluidic post arrays, the problem is far from resolved. A
particular shortcoming of the present model is the exces-
sively long average unhooking time. Indeed, the underesti-
mate of the separation resolution can be directly attributed to
an overly long unhooking time, since long unhooking times
increase both the dispersion caused by a single post collision
and the total time required to reach the detector. While some
potential solutions to the problem were noted in the Discus-
sion, understanding the post collision process remains an
area of fundamental research. A better model for the post

collision process, when combined with the CTRW approach
developed here, will ultimately provide a powerful analytical
tool for understanding DNA electrophoresis in microfluidic
post arrays.

ACKNOWLEDGMENT

I am grateful to Nabil Laachi at the University of Minne-
sota for a critical reading of this manuscript.

�1� J. L. Viovy, Rev. Mod. Phys. 72, 813 �2000�.
�2� W. D. Volkmuth and R. H. Austin, Nature �London� 358, 600

�1992�.
�3� W. D. Volkmuth, T. Duke, M. C. Wu, R. H. Austin, and A.

Szabo Phys. Rev. Lett. 72, 2117 �1994�.
�4� N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H.

Nakanishi, Y. Horiike, and Y. Baba, Anal. Chem. 76, 15
�2004�.

�5� G. C. Randall and P. S. Doyle, Phys. Rev. Lett. 93, 058102
�2004�.

�6� G. C. Randall and P. S. Doyle, Macromolecules 38, 2410
�2005�.

�7� P. S. Doyle, J. Bibette, A. Bancaud, and J. L. Viovy, Science
295, 2237 �2002�.

�8� N. Minc, C. Futterer, K. Dorfman, A. Bancaud, C. Gosse, C.
Goubault, and J. L. Viovy, Anal. Chem. 76, 3770 �2004�.

�9� N. Minc, J. L. Viovy, and K. D. Dorfman, Phys. Rev. Lett. 94,
198105 �2005a�.

�10� S. Popelka, Z. Kabatek, J. L. Viovy, and B. Gas, J. Chro-
matogr., A 838, 45 �1999�.

�11� M. Krawczyk, J. Dulak, and K. Kulakowski, Electrophoresis
23, 182 �2002�.

�12� H. Scher and M. Lax, Phys. Rev. B 7, 4491 �1973�.
�13� K. D. Dorfman and J. L. Viovy, Phys. Rev. E 69, 011901

�2004�.
�14� F. Brochard-Wyart, Europhys. Lett. 23, 105 �1993�.
�15� F. Brochard-Wyart, Europhys. Lett. 30, 387 �1995�.
�16� P. André, D. Long, and A. Ajdari, Eur. Phys. J. B 4, 307

�1998�.
�17� The effective charge represents the linear reponse between the

applied electric field and the force acting on the Kuhn step. It
differs from the intrinsic charge of the Kuhn step due to the
action of the electric field on the Debye layer.

�18� D. Long, J. L. Viovy, and A. Ajdari, Phys. Rev. Lett. 76, 3858
�1996�.

�19� E. M. Sevick and D. R. M. Williams, Phys. Rev. E 50, R3357
�1994�.

�20� Y. Masubuchi, H. Oana, T. Akiyama, M. Matsumoto, and M.
Doi, J. Phys. Soc. Jpn. 64, 1412 �1995�.

�21� N. Minc, P. Bokov, K. B. Zeldovich, C. Futterer, J. L. Viovy,
and K. D. Dorfman, Electrophoresis 26, 362 �2005b�.

�22� G. I. Nixon and G. W. Slater, Phys. Rev. E 50, 5033 �1994�.
�23� In order to arrive at an analytical result, it is necessary to

eventually invert the total cycle time for r0. The full trapping
time �22� cannot be inverted analytically. This limitation also
motivates the approximation in Eq. �25�.

�24� It is tempting to think that the net electrical force animating the
stem flower should be reduced as well when compared to a
taut chain, since the Kuhn steps contained in the flower are not
necessarily aligned with the electric field. However, the size of
the flower is independent of the length of the stem �at least
until very close to disengagement, where the stem disappears�.
As a result, the reduced electrical force arising from misalign-
ment of the bases with the field will be the same, on average,
for the flowers on each side of the post because they have the
same size. Inasmuch as the electrical force is a result of the
balance between the force acting on the long arm and that
acting on the short arm, then the net force only depends on the
difference in the stem length, with the electrical forces due to
the flowers canceling out.

�25� Although we have not explicitly included any relaxation ef-
fects in the microscale model, they would only serve to in-
crease the frequency of collisions in a stem flower relative to a
taut chain.

KEVIN D. DORFMAN PHYSICAL REVIEW E 73, 061922 �2006�

061922-10


